Linux on ARM

Gernot Kvas (gernot.kvas@fh-joanneum.at)

April 19, 2008

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

Table of contents

© Linux on ARM
@ Why would we want to do that?

@ Before Linux takes over...
o PCvs. ARM

@ Bootloader Requirements
@ Das U-Boot

© Kernel Internals
@ Machine Registration
@ Important Directories/Files
@ Adding a new SoC/Machine
@ Debugging

Q@ Userspace
@ How to create your own distribution

© Tips and Tricks

Linux on ARM

Why would we want to do that?

The ARM architecture

32-bit RISC: ARM offers IP cores of machines with interesting
features

@ Different instruction sets: Thumb, Jazelle

o Separate data/instruction busses

o DSP-Style vector operations

(]

Due to the licensing model, there exists a multidude of
different SoCs implementing ARM cores.

Good support by gcc/gdb and other Open-Source tools

ARM CPUs offer a good performance/power consumption
trade-off

Who would not want to run Linux on these?

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

Before Linux takes over... PC vs. ARM
oader Requirements

Booting the system

PC ARM

Firmware /Bootloader

Does basic hardware On ARM systems, replaces
initialsation both the BIOS and the

Bootloader, brings up the
(e.g.) GRUB hardware to a state where
Passes control to the kernel Linux can take over

Does the obvious Does the obvious

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

Before Linux takes over... PC vs. ARM
Bootloader Requirements
Das U-Boot

Booting on ARM

@ Linux on ARM requires the firmware/bootloader to set up the
hardware. See: Documentation/arm/Booting
@ The following steps are required:
© Set up and initialise the RAM (M)
© Initialise one serial port (R)
© Detect the machine type (M)
© Set up the kernel tagged list (M)
© Call the kernel image (M)
@ Before calling the Kernel:
& Switch off D-Cache, MMU, DMA
@ Switch off Interrupts
@ Get ARM in Supervisor Mode
o Set RO to 0, R1 to Machine Type and R3 to &(ATAGS)

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

Before Linux takes over... PC vs. ARM
Bootloader Requirements

Das U-Boot

Das U-Boot - The Universal Bootloader

@ Das U-Boot (http://www.denx.de/wiki/UBoot) is a
bootloader that amongst others boots ARM

@ Essentially does what is required by the previously mentioned
boot process

@ Supports various ARM cores

o Offers hardware support to boot from different storage devices
@ It is relatively easy to add your board:

@ Create a config.h file for your board
@ Write an assembler file that sets up RAM
© Write a C-file that does the high level init

@ U-Boot deals with the booting requirements

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

Machine Registration
Important Directories/Files

Kernel Internals z :
new SoC/Machine

Machine Registration

@ Each individual machine (= embedded system) is assigned a
number

@ This is the number passed in R2

http://www.arm.linux.org.uk/developer/machines/7action=new

#

Last update: Fri May 11 19:53:41 2007

#

machine_is_xxx CONFIG_xxxX MACH_TYPE_xxx number
#

ebsalll ARCH_EBSA110 EBSA110 0
riscpc ARCH_RPC RISCPC 1
nexuspci ARCH_NEXUSPCI NEXUSPCI 3
ebsa285 ARCH_EBSA285 EBSA285 4
csb726 MACH_CSB726 CSB726 1359
tik27 MACH_TIK27 TIK27 1360
mx_uc7420 MACH_MX_UC7420 MX_UC7420 1361

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

lachine Registration
Important Dlrectorles/Flles

Kernel Internals
new SoC/Machine

ARM relevant bits in the kernel

@ Relevant directories - everything below arch/arm:

¢ mm/lib/kernel/tools: You rarely have to deal with those
@ arch/arm/mm/proc-* shows the supported ARM CPUs:

proc-arm1020e.S proc-arm740.S proc-arm940.S proc-syms.c
proc-arm1020.S proc-arm7tdmi.S proc-arm946.S proc-v6.S
proc-arm1022.S proc-arm920.S proc-arm9tdmi.S proc-v7.S
proc-arm1026.S proc-arm922.S proc-macros.S proc-xsc3.S
proc-arm6_7.S proc-arm925.8S proc-sal100.S proc-xscale.S
proc-arm720.8S proc-arm926.S proc-sall0.§

@ Important for the implementer: arch/arm/arch-*,
include/asm-arm/mach-*

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

Machine Registration
Important Directories/Files

Kernel Internals | p i 0”2 new SoC /Machine

Adding a SoC

If you start supporting a totally new SoC:

@ Requires some assembler code in
include/asm-arm/mach-YOURSOC/

@ entry-macro.S: Initial low level handling of interrupts.
¢ debug-macro.S: Some routines to get early debug messages

This code is in include, because
arch/arm/kernel/entry-common.S and
arch/arm/kernel/debug.S pick it up
@ High level stuff is done in arch/arm/arch-YOURSOC
¢ irq.c: Contains the interrupt handling (ACK/MACK/MASK)
© Your core CPU is already supported, thus requiring only these
subtle changes

© But: You have no drivers yet! These live in the drivers
directory

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

stration
Important Directories/Files
Adding a new SoC/Machine

Debugging

Kernel Internals

Adding a new machine

@ Typically requires only changes to Kconfig/Makefile in the
respective arch—* directory and a single C-file

static void __init mach_spectro2_init_machine(void)
ns9xxx_init_machine();
platform_add_devices(devices, ARRAY_SIZE(devices));

spi_register_board_info(spi_b_board_info, ARRAY_SIZE(spi_b_board_info));
spi_register_board_info(spi_a_board_info, ARRAY_SIZE(spi_a_board_info));

i2c_register_board_info(0, spectro2_i2c_devices, ARRAY_SIZE(spectro2_i2c_devices));

¥
unsigned int ns_sys_clock_freq(void)
{
return 398131200;
}

MACHINE_START(SPECTR02, "Spectro2")
.map_io = mach_spectro2_map_io,
.init_irq = mach_spectro2_init_irq,
.init_machine = mach_spectro2_init_machine,
.timer = &ns9xxx_timer,
.boot_params = 0x100,

MACHINE_END

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

Machine Registration
Important D ries/Files
Adding a new SoC/Machine
Debugging

Kernel Internals

Debugging via UART and JTAG

@ As a serial port is strongly recommeded by the bootloader, use
it for debugging
& Uses functions defined in debug-macro.S
addruart - Checks for MMU to adjust base address
@ senduart - Sends a byte
@ busyuart - Checks for UART to finish
@ waituart - Waits for CTS

[

@ Other possibilities include the usage of a JTAG device

@ You will need one for initial bootloader development

o Fortunately, JTAG devices are available for around 100 Euros

@ OpenOCD http://openocd.berlios.de/ is a good
Open-Source package that allows GDB to talk to your CPU
via a JTAG device

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

How to create your own distribution
Userspace

Buildroot/OpenEmbedded

@ Buildroot and OpenEmbedded are good starting points for
your userspace applications
@ Buildroot is a framework of Makefiles

@ Configured with a Kernel-like ncurses interface
o Quite easy to add packages
o Tightly linked to uClibc, a small C library

@ OpenEmbedded uses a more powerful concept of packages
@ Used by OpenMoko, Angstrom

@ Be prepared to spend some time getting a properly configured
system. Once you have it, keep all the configs!

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

How to create your own distribution

Userspace

Cross Compiling

@ Typically for embedded systems, programs are compiled on

the host

@ This requires a cross compiler
o Use higher level tools to configure your compiler, this saves

you from trouble
o Fortunately, both Buildroot and OpenEmbedded do the job for

you!
o ldeally, use the same compiler for all your stuff

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

Tips and Tricks

Kernel-Wise

@ Use the source, Luke!

@ Keep in touch with current kernel development: Don't get
stuck with an ancient kernel version, you might need new
stuff!

@ Try to get your serial driver working first

@ Don't jump too many kernel versions at once when moving to
a more recent version

o Use GIT

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

Tips and Tricks

Community-Wise

@ Watch the relevant mailing lists:

o linux-arm-kernel - Kernel list

o linux-arm - General talk

& linux-arm-toolchain - Toolchain list

@ LKML - Linux kernel mailing list (If you have lots of time)
@ Mailing lists of subsystems (e.g. SPI, MMC()

@ Follow the “Release early - Release often” policy

@ Don't be afraid to show your code: Peer reviews of your code
guarantee quality

@ Try to get your stuff into the kernel - out of tree stuff is
harder to maintain

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

Tips and Tricks

Stuff that was discussed after the talk

o Buffalo ARM9-based Linkstations (LS Pro/LS Live) give good
eval boards

@ The JTAG header and serial port are labeled on the silkscreen

o http://buffalo.nas-central.org has a Wiki with all important
facts

¢ Marvell git-tree:
http://git.kernel.org/?p=linux/kernel /git/nico/orion.git

o Kernel 2.6.25 now has Marvell SoC support

o You can use the typical u-boot method of loading a new kernel
image via tftp, even with the stock u-boot loader

@ Use a recent OpenOCD version with Ferocon support

@ Amontec offers JTAG interfaces for about 30 Euros that work
with OpenOCD

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

	Linux on ARM
	Why would we want to do that?

	Before Linux takes over...
	PC vs. ARM
	Bootloader Requirements
	Das U-Boot

	Kernel Internals
	Machine Registration
	Important Directories/Files
	Adding a new SoC/Machine
	Debugging

	Userspace
	How to create your own distribution

	Tips and Tricks

