
Linux on ARM
Before Linux takes over...

Kernel Internals
Userspace

Tips and Tricks

Linux on ARM

Gernot Kvas (gernot.kvas@fh-joanneum.at)

April 19, 2008

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

Table of contents

1 Linux on ARM
Why would we want to do that?

2 Before Linux takes over...
PC vs. ARM
Bootloader Requirements
Das U-Boot

3 Kernel Internals
Machine Registration
Important Directories/Files
Adding a new SoC/Machine
Debugging

4 Userspace
How to create your own distribution

5 Tips and Tricks

Linux on ARM
Before Linux takes over...

Kernel Internals
Userspace

Tips and Tricks

Why would we want to do that?

The ARM architecture

32-bit RISC: ARM offers IP cores of machines with interesting
features

Different instruction sets: Thumb, Jazelle
Separate data/instruction busses
DSP-Style vector operations

Due to the licensing model, there exists a multidude of
different SoCs implementing ARM cores.

Good support by gcc/gdb and other Open-Source tools

ARM CPUs offer a good performance/power consumption
trade-off

Who would not want to run Linux on these?

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

Linux on ARM
Before Linux takes over...

Kernel Internals
Userspace

Tips and Tricks

PC vs. ARM
Bootloader Requirements
Das U-Boot

Booting the system

PC

BIOS

Does basic hardware
initialsation

(e.g.) GRUB

Passes control to the kernel

Kernel

Does the obvious

ARM

Firmware/Bootloader

On ARM systems, replaces
both the BIOS and the
Bootloader, brings up the
hardware to a state where
Linux can take over

Kernel

Does the obvious

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

Linux on ARM
Before Linux takes over...

Kernel Internals
Userspace

Tips and Tricks

PC vs. ARM
Bootloader Requirements
Das U-Boot

Booting on ARM

Linux on ARM requires the firmware/bootloader to set up the
hardware. See: Documentation/arm/Booting

The following steps are required:
1 Set up and initialise the RAM (M)
2 Initialise one serial port (R)
3 Detect the machine type (M)
4 Set up the kernel tagged list (M)
5 Call the kernel image (M)

Before calling the Kernel:

Switch off D-Cache, MMU, DMA
Switch off Interrupts
Get ARM in Supervisor Mode
Set R0 to 0, R1 to Machine Type and R3 to &(ATAGS)

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

Linux on ARM
Before Linux takes over...

Kernel Internals
Userspace

Tips and Tricks

PC vs. ARM
Bootloader Requirements
Das U-Boot

Das U-Boot - The Universal Bootloader

Das U-Boot (http://www.denx.de/wiki/UBoot) is a
bootloader that amongst others boots ARM

Essentially does what is required by the previously mentioned
boot process

Supports various ARM cores

Offers hardware support to boot from different storage devices

It is relatively easy to add your board:
1 Create a config.h file for your board
2 Write an assembler file that sets up RAM
3 Write a C-file that does the high level init

U-Boot deals with the booting requirements

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

Linux on ARM
Before Linux takes over...

Kernel Internals
Userspace

Tips and Tricks

Machine Registration
Important Directories/Files
Adding a new SoC/Machine
Debugging

Machine Registration

Each individual machine (= embedded system) is assigned a
number

This is the number passed in R2

http://www.arm.linux.org.uk/developer/machines/?action=new

#

Last update: Fri May 11 19:53:41 2007

#

machine_is_xxx CONFIG_xxxx MACH_TYPE_xxx number

#

ebsa110 ARCH_EBSA110 EBSA110 0

riscpc ARCH_RPC RISCPC 1

nexuspci ARCH_NEXUSPCI NEXUSPCI 3

ebsa285 ARCH_EBSA285 EBSA285 4

csb726 MACH_CSB726 CSB726 1359

tik27 MACH_TIK27 TIK27 1360

mx_uc7420 MACH_MX_UC7420 MX_UC7420 1361

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

Linux on ARM
Before Linux takes over...

Kernel Internals
Userspace

Tips and Tricks

Machine Registration
Important Directories/Files
Adding a new SoC/Machine
Debugging

ARM relevant bits in the kernel

Relevant directories - everything below arch/arm:

mm/lib/kernel/tools: You rarely have to deal with those
arch/arm/mm/proc-* shows the supported ARM CPUs:
proc-arm1020e.S proc-arm740.S proc-arm940.S proc-syms.c

proc-arm1020.S proc-arm7tdmi.S proc-arm946.S proc-v6.S

proc-arm1022.S proc-arm920.S proc-arm9tdmi.S proc-v7.S

proc-arm1026.S proc-arm922.S proc-macros.S proc-xsc3.S

proc-arm6_7.S proc-arm925.S proc-sa1100.S proc-xscale.S

proc-arm720.S proc-arm926.S proc-sa110.S

Important for the implementer: arch/arm/arch-*,
include/asm-arm/mach-*

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

Linux on ARM
Before Linux takes over...

Kernel Internals
Userspace

Tips and Tricks

Machine Registration
Important Directories/Files
Adding a new SoC/Machine
Debugging

Adding a SoC

If you start supporting a totally new SoC:
1 Requires some assembler code in

include/asm-arm/mach-YOURSOC/

entry-macro.S: Initial low level handling of interrupts.
debug-macro.S: Some routines to get early debug messages

This code is in include, because
arch/arm/kernel/entry-common.S and
arch/arm/kernel/debug.S pick it up

2 High level stuff is done in arch/arm/arch-YOURSOC

irq.c: Contains the interrupt handling (ACK/MACK/MASK)

3 Your core CPU is already supported, thus requiring only these
subtle changes

4 But: You have no drivers yet! These live in the drivers

directory

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

Linux on ARM
Before Linux takes over...

Kernel Internals
Userspace

Tips and Tricks

Machine Registration
Important Directories/Files
Adding a new SoC/Machine
Debugging

Adding a new machine

Typically requires only changes to Kconfig/Makefile in the
respective arch-* directory and a single C-file
static void __init mach_spectro2_init_machine(void)

{

ns9xxx_init_machine();

platform_add_devices(devices, ARRAY_SIZE(devices));

spi_register_board_info(spi_b_board_info, ARRAY_SIZE(spi_b_board_info));

spi_register_board_info(spi_a_board_info, ARRAY_SIZE(spi_a_board_info));

i2c_register_board_info(0, spectro2_i2c_devices, ARRAY_SIZE(spectro2_i2c_devices));

}

unsigned int ns_sys_clock_freq(void)

{

return 398131200;

}

MACHINE_START(SPECTRO2, "Spectro2")

.map_io = mach_spectro2_map_io,

.init_irq = mach_spectro2_init_irq,

.init_machine = mach_spectro2_init_machine,

.timer = &ns9xxx_timer,

.boot_params = 0x100,

MACHINE_END

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

Linux on ARM
Before Linux takes over...

Kernel Internals
Userspace

Tips and Tricks

Machine Registration
Important Directories/Files
Adding a new SoC/Machine
Debugging

Debugging via UART and JTAG

As a serial port is strongly recommeded by the bootloader, use
it for debugging

Uses functions defined in debug-macro.S

addruart - Checks for MMU to adjust base address

senduart - Sends a byte

busyuart - Checks for UART to finish

waituart - Waits for CTS

Other possibilities include the usage of a JTAG device

You will need one for initial bootloader development
Fortunately, JTAG devices are available for around 100 Euros
OpenOCD http://openocd.berlios.de/ is a good
Open-Source package that allows GDB to talk to your CPU
via a JTAG device

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

Linux on ARM
Before Linux takes over...

Kernel Internals
Userspace

Tips and Tricks

How to create your own distribution

Buildroot/OpenEmbedded

Buildroot and OpenEmbedded are good starting points for
your userspace applications

Buildroot is a framework of Makefiles

Configured with a Kernel-like ncurses interface
Quite easy to add packages
Tightly linked to uClibc, a small C library

OpenEmbedded uses a more powerful concept of packages

Used by OpenMoko, Angstrom

Be prepared to spend some time getting a properly configured
system. Once you have it, keep all the configs!

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

Linux on ARM
Before Linux takes over...

Kernel Internals
Userspace

Tips and Tricks

How to create your own distribution

Cross Compiling

Typically for embedded systems, programs are compiled on
the host

This requires a cross compiler

Use higher level tools to configure your compiler, this saves
you from trouble
Fortunately, both Buildroot and OpenEmbedded do the job for
you!
Ideally, use the same compiler for all your stuff

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

Linux on ARM
Before Linux takes over...

Kernel Internals
Userspace

Tips and Tricks

Kernel-Wise

Use the source, Luke!

Keep in touch with current kernel development: Don’t get
stuck with an ancient kernel version, you might need new
stuff!

Try to get your serial driver working first

Don’t jump too many kernel versions at once when moving to
a more recent version

Use GIT

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

Linux on ARM
Before Linux takes over...

Kernel Internals
Userspace

Tips and Tricks

Community-Wise

Watch the relevant mailing lists:

linux-arm-kernel - Kernel list
linux-arm - General talk
linux-arm-toolchain - Toolchain list
LKML - Linux kernel mailing list (If you have lots of time)
Mailing lists of subsystems (e.g. SPI, MMC)

Follow the “Release early - Release often” policy

Don’t be afraid to show your code: Peer reviews of your code
guarantee quality

Try to get your stuff into the kernel - out of tree stuff is
harder to maintain

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

Linux on ARM
Before Linux takes over...

Kernel Internals
Userspace

Tips and Tricks

Stuff that was discussed after the talk

Buffalo ARM9-based Linkstations (LS Pro/LS Live) give good
eval boards

The JTAG header and serial port are labeled on the silkscreen
http://buffalo.nas-central.org has a Wiki with all important
facts
Marvell git-tree:
http://git.kernel.org/?p=linux/kernel/git/nico/orion.git
Kernel 2.6.25 now has Marvell SoC support
You can use the typical u-boot method of loading a new kernel
image via tftp, even with the stock u-boot loader
Use a recent OpenOCD version with Ferocon support
Amontec offers JTAG interfaces for about 30 Euros that work
with OpenOCD

Gernot Kvas (gernot.kvas@fh-joanneum.at) Linux on ARM

	Linux on ARM
	Why would we want to do that?

	Before Linux takes over...
	PC vs. ARM
	Bootloader Requirements
	Das U-Boot

	Kernel Internals
	Machine Registration
	Important Directories/Files
	Adding a new SoC/Machine
	Debugging

	Userspace
	How to create your own distribution

	Tips and Tricks

